New clinical pathway for chest pain assessment: Role of Cardiac MDCT

Sang Il Choi, M.D. (drsic@radiol.snu.ac.kr)
Assistant Professor
Director of CT and 3D Imaging Lab
Department of Diagnostic Radiology
Seoul National University Bundang Hospital
College of Medicine Seoul National University

Potential clinical application

MDCT in Atypical Chest Pain

• Significant number of noncardiac findings in cardiac MDCT:
 - new, noncardiac findings: 292/346 patients (58.1%)
 - clinically significant findings: 114/346 patients (22.7%)

 Onuma Y. JACC 2006; 04.071v1

• Population having a low pretest likelihood of significant CAD:
 - moderate to high sensitivity and high NPV for the detection or exclusion of significant disease.

 Nikoloua K. AJB 2006; 186: 1658-1668

Potential clinical application

MDCT in Atypical Chest Pain

(M/61) Chest pain: continuous, radiating to the back
TMT and Holter: Normal
EchoCG: Normal
SPECT: Fixed defect at anterior wall (R/O breast attenuation)
Potential clinical application

- Atypical chest pain
- Chest pain with equivocal stress test
- Preprocedural evaluation of chronic total occlusion
- Acute coronary syndrome
- Preoperative evaluation of coronary artery bypass graft or non-cardiac surgery at high risk patients
- Evaluation of stent patency
- Normal variation and congenital anomaly
- Asymptomatic patient for screening

Chest pain with equivocal stress test

- Coronary CTA:
 - diagnosed obstructive CAD in 1/4 of patients with negative TMT
 - excluded CAD in over half the patients with equivocal TMT.
- Coronary CTA is an excellent tool for improving diagnostic accuracy in patients with chest pain, moderate pre-test probability of CAD, and equivocal findings on TMT.

Rubinstein R et al. ACC 2006; 807-6.

MDCT in negative TMT

- Atypical chest pain
- TMT: Normal

Chest pain with equivocal stress test

- A strategy that uses coronary CT angiography as a gatekeeper to catheterization is cost saving as opposed to initial catheterization for patients with equivocal or mildly abnormal nuclear perfusion scans.

Cole JH et al. ACC 2006; 807-4.
MDCT in negative SPECT
F/72, Dyspnea (onset: 2 month),
EchoCG: Normal, SPECT: Normal
Left main: 80% stenosis

Potential clinical application

- Atypical, symptomatic, chest pain
- Chest pain with equivocal stress test
- Preprocedural evaluation of chronic total occlusion
- Acute coronary syndrome
- Preoperative evaluation of coronary artery bypass
graft or non-cardiac surgery at high risk patients
- Evaluation of stent patency
- Normal variation and congenital anomaly
- Asymptomatic patient for screening

MDCT in negative TMT and SPECT
DOE: FC II
TMT: Normal
SPECT: No perfusion defect
pLAD: 75% stenosis

MDCT in Chronic Total Occlusion
** Independent predictors of procedural failure
for percutaneous revascularization
- Blunt stump (by conventional angiography)
- Occlusion length: > 15 mm
- Severe calcification (by CT angiography)

MDCT in Chronic Total Occlusion
Additional information of CT angiography
- 3-dimensional length measurement of
coronary segment
- Evaluation of the morphology of the occlusion
trajectory
** difficulty of measurement by conventional angiography:
foreshortening, calibration limitation, lack of visualization
of distal vessel in the absence of collateral filling

Potential clinical application

- Atypical, symptomatic, chest pain
- Chest pain with equivocal stress test
- Preprocedural evaluation of chronic total occlusion
- Acute coronary syndrome
- Preoperative evaluation of coronary artery bypass graft or non-cardiac surgery at high risk patients
- Evaluation of stent patency
- Normal variation and congenital anomaly
- Asymptomatic patient for screening

Dirksen MS et al. Am J Cardiol 2005; 95: 457-461

MDCT in Acute coronary syndrome

- Simultaneous assessment of CAD and global/ regional LV function.
- High accuracy of CT angiography in excluding significant CAD and in assessing LV function.
- Potential clinical use for screening of patients who present with symptoms of unstable angina.

<table>
<thead>
<tr>
<th>MDCT</th>
<th>CAG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MM</td>
</tr>
<tr>
<td>MM</td>
<td>3</td>
</tr>
<tr>
<td>PCI</td>
<td>3</td>
</tr>
<tr>
<td>CABG</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

- MM: Medical management, PCI: Percutaneous coronary intervention, CABG: coronary artery bypass graft

Cardiac Thrombus

MDCT in Acute coronary syndrome

Lt. chest pain (squeezing pain, radiation to back)
ECG: T-wave inversion at V2-4
CK/CK-MB/TnI: 45/0.2/0.08

TJ Yoon, SI Choi et al. Eur Radiol (Submitted)

MDCT in Acute coronary syndrome

Lt. chest pain (squeezing pain, radiation to back)
ECG: T-wave inversion at V2-4
CK/CK-MB/TnI: 45/0.2/0.08

TJ Yoon, SI Choi et al. Eur Radiol (Submitted)

MDCT in Acute chest pain

• CTA can rapidly and definitely exclude CAD as the cause of acute chest pain.
• Immediate CTA reduces length of stay and cost of care without increasing risk (64 MDCT).
• MDCT as a first diagnostic approach to acute chest pain:
 - can reduce the unnecessary admission
 - possibly reduces the length of hospital stay in patients with clinically low and intermediate risk of CAD (64 MDCT).

Raff GL et al. ACC 2006: 807-8

MDCT in Acute chest pain

• "Triple Rule Out"
 - Acute coronary syndrome
 - Aortic dissection
 - Pulmonary embolism

TJ Yoon, SI Choi et al. Eur Radiol (Submitted)

MDCT in Acute Chest Pain

• Promising comprehensive method for evaluating cardiac and noncardiac chest pain in stable emergency department (16 MDCT).

"Triple Rule Out"

** Acute coronary syndrome, Aortic dissection, Pulmonary embolism **

“Triple Rule Out”

M441, Acute chest pain
ECG: LBBB, V1~V4 ST elevation, hyperacute T wave, T-wave inversion on Lead II
R/O ST Em, Aortic dissection → R/O Acute pancreatitis

** Intramural Hematoma with Giant Aortic Dissection **
Potential clinical application

- Atypical, symptomatic, chest pain
- Chest pain with equivocal stress test
- Preprocedural evaluation of chronic total occlusion
- Acute coronary syndrome
- Preoperative evaluation of coronary artery bypass graft or non-cardiac surgery at high risk patients
- Evaluation of stent patency
- Normal variation and congenital anomaly
- Asymptomatic patient for screening

The Merit of CTA for planning of CABG

- Calcified plaque at target vessels
- Myocardial bridging
- Epicardial fatty tissue

Evaluation of Stent Patency

<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Assessable</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schuijf JD</td>
<td>Am J Cardiol 2004</td>
<td>70%</td>
<td>78%</td>
<td>100% (patency)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilard M</td>
<td>Am J Cardiol 2005</td>
<td>75%</td>
<td>96% (restenosis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilard M</td>
<td>Heart 2006</td>
<td>Left main</td>
<td>100%</td>
<td>100%</td>
<td>92% (restenosis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 3.0 mm</td>
<td>81%</td>
<td>86%</td>
<td>100% (restenosis)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 3.0 mm</td>
<td>51%</td>
<td>54%</td>
<td>100% (restenosis)</td>
<td></td>
</tr>
</tbody>
</table>

16-Slice MDCT

Evaluation of Stent Patency

- Left main
- Stent diameter: > 3.0 mm
- Strut thickness: < 140 micro
- Instant restenosis: > 35%
- Stainless steel
Potential clinical application

- Atypical, symptomatic, chest pain
- Chest pain with equivocal stress test
- Preprocedural evaluation of chronic total occlusion
- Acute coronary syndrome
- Preoperative evaluation of coronary artery bypass graft or non-cardiac surgery at high risk patients
- Evaluation of stent patency
- Normal variation and congenital anomaly
- Asymptomatic patient for screening

Anomaly or Variation of Coronary Artery

- Coronary CTA is a viable noninvasive modality in the delineation of coronary arterial anomalies, particularly if results of coronary angiography are equivocal.
- Coronary CTA is valuable for depicting the relationships among the coronary vessel, great vessels, and ventricles.

Anomaly or Variation of Coronary Artery

- Coronary CTA is a viable noninvasive modality in the delineation of coronary arterial anomalies, particularly if results of coronary angiography are equivocal.
- Coronary CTA is valuable for depicting the relationships among the coronary vessel, great vessels, and ventricles.

Anomalous Origin of Coronary Artery

Coronary CTA:
Screening test in Asymptomatic patient?

EK Choi et al 2006, AHA

Dec 2005 ~ May 2006
Health check-up
Single Center, Retrospective

Control group
(n=1067)

CCTA group
(n=1067)

Age, sex, ETT matched
with MDCT group

Self reported questionnaire

Coronary CTA: W/U
(n=1074)

ASX

CCTA group
(n=1067)

No MDCT W/U
(n=4591)

Total population
(n=5665)

Exclusion

Self reported questionnaire

Age, sex, ETT matched
with MDCT group

Coronary CTA: W/U
(n=1074)
Risk Stratification according to NCEP guideline

- **High-risk Group**
 - CHD or CHD risk equivalent (10-yr risk > 20%)

- **Moderate-risk Group**
 - ≥ 2 risk factors (10-yr risk < 20%)

- **Low-risk Group**
 - 0-1 risk factors

Risk factors: cigarette smoking, hypertension (BP ≥ 140/90 mmHg or antihypertensive medication), HDL cholesterol < 40 mg/dL, family history of premature CHD (CHD in male first-degree relative < 55 years of age; CHD in female first-degree relative < 65 years of age; age men ≥ 45 years; women ≥ 55 years).

Coronary CTA: Screening test in Asymptomatic patient?

- **Revascularization** (시행 여부)
 - CTA group = 15/1067 (1.4%),
 - Control group = 2/1067 (0.1%)

 Asymptomatic patient with moderate to high risk (CT-2b):
 - 15/1067 (1.4%) vs. 2/1067 (0.1%)

- Even in asymptomatic population, especially those with moderate to high risk group, CTA had a significant impact on screening and managing occult CAD.

Coronary CTA: New Paradigm?

- Should coronary CTA be used as a first test for the evaluation of chest pain or as a complementary test in patients with equivocal stress test results?
- Should coronary CTA be used as a screening test in asymptomatic patients at risk?
- The potential value of atherosclerotic plaque assessment by coronary CTA could provide to be useful in guiding preventive and therapeutic strategies.
Coronary CTA: New Paradigm?

<table>
<thead>
<tr>
<th>Modality</th>
<th>Cost</th>
<th>Time</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMT</td>
<td>36,000원</td>
<td>20 min</td>
<td>50%</td>
</tr>
<tr>
<td>Stress EchoCG</td>
<td>400,000원</td>
<td>30 min</td>
<td>82%</td>
</tr>
<tr>
<td>SPECT</td>
<td>600,000원</td>
<td>4 hour</td>
<td>90%</td>
</tr>
<tr>
<td>MRI</td>
<td>750,000원</td>
<td>1 hour</td>
<td>90%</td>
</tr>
<tr>
<td>PET</td>
<td>700,000원</td>
<td>2 hour</td>
<td>90%</td>
</tr>
<tr>
<td>CT</td>
<td>300,000원</td>
<td>15 min</td>
<td>82%</td>
</tr>
</tbody>
</table>

New Paradigm for the Evaluation of Ischemic Heart Disease in the Era of Cardiac MDCT and MRI

- Asymptomatic, but moderate to high risk patient - CT (first line)
- Symptomatic, but atypical chest pain - CT (first line)
- Stable angina without dysfunctional myocardium - CT (first line)
- Stable angina with dysfunctional myocardium - MRI (complementary)
- Stable angina with multi-vessel disease - MRI (complementary)
- Microvascular angina (Syndrome X or Women’s Heart Syndrome) - CT (first line) or MRI (first line or complementary imaging)
- Acute coronary syndrome (unstable angina, NSTEMI) - CT (first line imaging)
- Acute coronary syndrome (STEMI) - MRI (complementary)
- Chronic myocardial infarction with dysfunctional myocardium - MRI (first line or complementary imaging)

Thank you for your Attention!!

Sang Il Choi, M.D
(drisic@radiol.snu.ac.kr, sichoi@snu.ac.kr)
Assistant Professor
Director of CT and 3D Imaging lab
Department of Diagnostic Radiology
Seoul National University Bundang Hospital
College of Medicine Seoul National University