

Ventricular Function Evaluation using MDCT

Yeon Hyeon Choe, MD

Department of Radiology, Samsung Medical Center, Sungkyunkwan University

Disadvantages of MDCT

- · Ionizing radiation
- Use of iodine contrast
- Limited temporal resolution (→83 ms)
- Cardiac motion artifacts in patients with fast heart rates or arrhythmia

Introduction

- MDCT has capability of bi-ventricular function evaluation.
- Small number of paper have been published for validation of MDCT for this purpose

Techniques of MDCT

- . The same as in coronary CTA
- · RV function
 - Injection of diluted contrast material mixed with saline is recommended following contrast bolus in full concentration

Advantages of MDCT

- Utilization of the same multiphase reconstruction data acquired for cardiac CT
- High contrast between ventricular cavity and myocardium
- Rapid acquisition of image data as compared with MRI and echocardiography
- Less susceptible to arrhythmia than MRI
- · Capability of right ventricular evaluation

2 Different Semiautomatic Analysis Tools

- Multiplanar short-axial image reconstruction
 - Simpson method
- 3D images
 - -Threshold-based region growing algorithm
 - Sensitive to good contrast opacification
 - Delineation of trabeculae influenced by degree of contrast

Multiplanar Short-axial Image Reconstruction

42/M with CABG, EF = 51%

Phase Location and Image Reconstruction Window

Automatic Segmentation

- Multiphase reconstruction
 20 phases at every 5% of AR interval
 Systolic phases (35–50%) at 5% Interval
 35/40% and 95% reconstruction
- 2-phase reconstruction according to EOG wave 00m TH, AJR 2005;185:319-325)
 ES: window is helf way in ascending T wave ED: window is at starting point of QFS complex: LVEDV, LVESV, SV, EF correlated well with multiphase reconstruction tech.

 CT overestimation of EF by 2,9% ± 8,7 cm echo.

Comparison of MDCT with Other Imaging Techniques

Regional Wall Motion: MDCT vs. MRI

- 30 patients with MI, CAD, ARVD, DCMP.
- 252/266 (94.7%) of normal, 189/214 (88.3%) of decreased WM → correctly identified by CT
 - Sens 88%, spec 95% for WM abnormalities
- LV-WM scores were identical in 86.7% (k=0.809)
- · CT underestimated degree of WM abn.
- Lower interobserver agreement in CT (66,5%) cw MRI (89,1%, p<0.01)

Fischbach R, et al. Eur Radiol 2006 Sep.

MDCT vs. Cine LV graphy

- Area-length methods for 2 techniques
- 22 patients with coronary artery disease
- LVEF: $60.1\pm11\%$ vs. $69.9\pm12.4\%$ (r=0.76)
- Simpson's method for CT: mean difference with cine LVG = 11.5 ± 5.7%

Juergens KU, AJR 2002;179:1545-1550

LV Size and Function: Comparison among real-time 3D echo, 16-MDCT, and MRI

- 31 patients
- MRI: radial long axis images in 6 planes
- CT: images in 10% interval
- Real time 3D Echo: 4 wedge-shaped subvolumes

Sugeng L et al. Circulation 2006;114:651-661

16-slice MDCT and MRI

- 40 patients with CAD
- LV EDV and ESV were similar.
- $-~134~\pm~51~vs.~137~\pm~57,$ r=0.92; 67 $\pm 56~vs.~70~\pm 60,$ r=0.95
- LV EF were similar.
 - $-55 \pm 21 \text{ vs. } 56 \pm 21, \text{ r=0.95}$
- Regional end-diastolic and end-systolic wall thickness were highly correlated (r=0.84), but lower than by MR (r=0.92).
- Values of regional wall thickening by MDCT (54 \pm 30) and MR (51 \pm 31) were similar (r=0.91).

Belge et al. Eur radiol 2006:16:1424-1433

- CT and RT3DE measurement in high correlation (r² >0.85) with MR
- CT overestimated EDV (26 ml) and ESV (19 ml) (p<0.05)
- RT3DE underestimated EDV (5 ml) and ESV (6 ml) with bias in EF, 0.3%.
- Variability in CT measurement was half of echo and MRI

Sugeng L et al. Circulation 2006:114:651-661

RV Fn in Adults with CHD: MRI-MDCT Comparison

- RVEF showed moderate agreement (45 $\pm~$ 18 vs. 42 $\pm~$ 17%, r = 0.86)
- RV volumes correlated well in 18 MRI-MDCT data pairs.

- EDV: 170 ± 65 vs. 160 ± 56 , r=0.93 - ESV: 104 ± 65 vs. 97 ± 56 , r=0.97

Raman et al. Am Heart J 2006;151:736-744

Materials and Methods

- Acquisition on the same day except 2 pts (14 and 18 days intervals)
- ✓ Mean heart rate CT : 66.9 bpm, 48 = 101

MRI: 70,7 bpm, 47− 100 ✓ No medication

Approximated duration of post-processing

CT : 5 - 10 min

MRI: 15 - 20 min

40-slice MDCT Evaluation of Biventricular Function of the Heart: Comparison with MRI

Suk Jung Kim¹, Yeon Hyeon Choe¹, Young Mi Chun²

Department of Radiology, Samsung Medical Center¹, Sungkyunkwan University School of Medicine and Philips Medical Systems Korea²

Materials and Methods

Short axis reformation images of MDCT Short axis images using FIESTA sequence of cine-MRI

Semiautomated edge-detection software (Cardiac Review) Semiautomated contour detection technique (MASS-plus)

Manual correction by two independent observers

Materials and Methods

- 49 patients underwent both CT and MRI.
 (41 CABG: 6 previous MI)
- ECG-gated MDCT was performed using Philips 40 slice CT (Brilliance 40) with adaptive recon, Algorithm and dual-phase CM injection
- Cine MR imaging was performed using an 1.5 T scanner (GE Signa CVI) and FIESTA sequence (Fastimaging with steady-state acquisition)

RV parameter	CT	MRI		
EDV	123.68 ± 23.6	99.27 ± 28.3		
ESV	59.12 ± 14.3	50.09 ± 10.4 24.		
sv	64.58 ± 17.5	48.4 ± 20.2 9.0		
EF	51.97 ± 8.59	49.07 ± 11.5 48		

Materials and Methods

- ✓ Left ventricular EDV, ESV, SV, EF, mass Right ventricular EDV, ESV, SV, EF
- ✓ Statistics
 Paired t-test / Wilcoxon's signed rank test
 Pearson's / Spearman's correlation analysis

Result

Correlation	LV	RV		
Good	ESV. Mass (r=0.76, 0.92) (p=0.001)			
Moderate	EDV, EF (r=0.69,0.64) (p<0.01)	EDV, ESV (r=0.56, 0.42) (p<0.01)		
Poor	SV (m0.25) (p<0.05)	SV, EF (m0.36, 0.17) (p<0.05)		

Result

LV parameter	CT	MRI
EDV	108.12 ± 29.2	109.12 ± 29.9
ESV	38.16 ± 22.6	45.08 ± 25.5
sv	69.98 ± 15.8	E4.04 ± 14.7
EF	66.14 ± 11.3	60,70 ± 12.4
LVM	90.36 ± 22.35 :	91.04 ± 23.1

Summary

- LV ESV, SV, and EF and RV EDV, ESV, and SV were significantly different (p < 0.05).
- LVEDV, LV mass and RVEF were not significantly different (p > 0.05).
- CT overestimated RVEF and LVEF compared with MRI with mean difference of 1.9%, and 5.4% respectively.

Conclusion

In comparison with MRI,

40-MDCT seems to allow reliable assessment of LV EDV, LVM, and RV EF and

rough estimation of <u>LV ESV, LV EF, RV EDV,</u> and <u>RV ESV.</u>

LV Fn Analysis: MDCT vs. MRI

7	No.	lo. LVEUV		LVESV		EF		Marr	
	Pts	MO	CC	MO	OC:	MO	CC:	MD	CC
No. (SMC)	49	-1.0	0.89	5.9	0.35	5.4	0.64	-0.5	0.92
Grude	30	14	0.80	17	0.89	-9	0.85		
Yamanaro	50	-0.4	0.97	1.1	0.99	-1.2	0.96	2.5	0.96
Henrichmid	31	70.7	0.86	4.6	0.91	1.4	0.87	11.5	0.89
Kach	19	-4,2	0,90	-6,9	0,98	3,4	0,95		
Acuracys	30	-8.2	0.93	-1	0.54	0.2	0.88		

MD = mean-difference, CC = correlation coefficient

Technical Considerations in MDCT

Limitation of Temporal Resolution (TR)

- 20 ms TR is needed to complete removal of cardiac motion artifact
- Duration of total electromechanical systole is 300 ms, minimal ventricular volume is maintained for 80-200 ms
- · ESV may be overestimated due to TR
- Current system: gantry rotation 0.33 s, TR 83 ms (dual-source scanner)

Time-dependent Change in LV Volume (MDCT vs. MRI in Pigs)

- Differs markedly because of limited temporal resolution of 16-slice MDCT
- Different peak emptying rate, peak filling rate, time to PER, and time to PFR.

Mahnken AH et al. Radiology 2005:236:112-117

Effect of Image Reconstruction Window within Cardiac Phases, slice thickness, and interval of short-axial sections

- Comparison of systolic volumes in 6 phases (30–55%, 5% interval) and 3 phases (35–55%, 10% interval)
- Comparison of 1-,2-, and 3-mm thick axial images
- Comparison of 10, 14, 30 short-axial sections

Suzuki S, et al. Circulation J 2006:70:289-296

- 3 phases (10% interval): mean measurement error, -0.4%; standard error of estimate (SEE), 0.6%
- No difference between SEE of interobserver reproducibility and that of analysis with 30 sections (1, 2, 3 mm) and 14 sections (1, 2 mm)

Suzuki S, et al. Circulation J 2006:70:289-296

2-Vessel Disease (63/M)

REPARKS

Perfusion Defect without MI (76/F)

mier:

MDCT Function Analysis: EF = 81%

MEHRO

Normal ECG, CT EF = 48%

Systolic Phase

CT Function Analysis: Wall Thickening

Summary

- MDCT provides reliable information on biventricular function parameters in addition to that of coronary artery anatomy.
- New generation scanners with higher temporal resolution may enable more accurate analysis of global function and regional wall motion with decreased radiation dose.